

Lisp ”images” in LBM

Bo Joel Svensson
A Chalmers FP-Talk!
2025

LispBM (LBM)
● Lisp like language for microcontrollers.

– (,), car, cdr, (+ 1 2)

● With some built-in functionality inspired by
Erlang.
– Pattern matching, message passing, process

monitoring.

Target platforms
● Flexible, but mostly

– STM32 (ARM) microcontrollers.
● 192KB ram, up to 1MB flash.

– ESP32C3 (RISC-V) microcontrollers.
● 400KB ram, 4MB flash.

● Also runs fine on
– X86, Raspberry PI ...

Purpose
● Integrate into existing embedded application to

provide a scripting layer.
– Sandboxed.
– Not the only thing using FLASH/RAM.

Problems!
● Our programs are larger than our RAM.
● Flash memory has limitations.
● Booting is slow.

Booting an LBM application

Boot process

Boot process

Boot process

2

Boot process

2

Boot process

2
(define a 10)

(+ a 10)

Boot process

2
(define a 10)

(+ a 10)

Eval

Incremental read

Boot process

2
May require
more heap than
we have!

Boot process

2

Boot process

2

@const-start
(define a [1 2 3 4])
(defun f (x) (+ x 1))
@const-end

Eval

Boot process

2

@const-start
(define a [1 2 3 4])
(defun f (x) (+ x 1))
@const-end

Eval

Boot process

2

@const-start
(define a [1 2 3 4])
(defun f (x) (+ x 1))
@const-end

Eval

Flash is a bit tricky!

Why are constant blocks tricky

Summary so far
● The boot process is slow!
● Constant heap is a bit awkward.

– Careful programming needed!

Images to the rescue!
● Image based development.

– Smalltalk, SBCL.
– Fun playful REPL-interaction based development.
– (save-image)

The idea

Runtime
system

Libraries

Heap

Distributable
binary blob

Restart

Distributable
binary blob

Restart

Distributable
binary blob

Restarting a sytem in this way should be MUCH
faster than that entire reader based bootup-
process from earlier!

Runtime
system

Libraries

Heap

Problems!
● Not enough room for a complete copy of HEAP,

arrays-memory and constant-heap.
● RTS data-structures must be restored upon

image-boot.
– Symbol numbering, extensions

● Initialization of peripherals.

Decisions
● Not going to save all state.

– Not saving threads.
– Not even going to try to automatically reinitialize any

peripherals.
– Not going to save entire RAM heap to image.
– Not going to save entire arrays memory to image.

● A Startup entry is saved in the image.
– Reinitialize peripherals.
– Start up threads.

● Save the values stored in the global environment.

Decisions
● Create the image incrementally

– The constant heap is built-up inside of the image from
the beginning.

– RTS data-structures that needs to be restored upon
image-boot are created inside the image storage by
default.

● Symbol string ↔ number mappings.
● Extensions function pointer addresses.
● Constant heap write position.

Image Structure
● The image is a collection of data fields written

into flash.
● Duplicated data fields are allowed, where later

fields have priority over earlier. Allows
Incremental work towards same image.

FW

The image

LBM RTS

LISP SOURCE

”IMAGE”

● Constant heap grows from
bottom of image and upwards.

● All other data is added from
the top and downwards in the
image.

● When these two write pointers
meet, image is full.

Creating an image

Creating an image

Source is read and
evaluated, data-structures
built in constant heap.

Creating an image

Source is read and
evaluated, data-structures
built in RAM heap.

Creating an image

Saves RAM heap structures to
image (and more)

Typical Image-save

Boot
● Check if there is an image: 0xBEEF2001

– Constant heap exists. Initialize
– Start reading fields from top of image.

Restore environment

Restore environment

Flatten and un-flatten
● Recursive serialisation and de-serialisation

functions.
● We ran out of stack on the thread that

performed serialisation and de-serialisation.

Flatten and un-flatten
● Recursive serialisation and de-serialisation

functions.
● We ran out of stack on the thread that

performed serialisation and de-serialisation.
● Replaced with pointer reversal algorithms!

Thoughts
● Boot is fast!
● Incremental work against image ”possible” but

not ideal (duplication).
● Program source only read once, constant block

determinism is not a problem.
● A “main” or “startup” function is needed.

Thoughts
● Flatten and un-flatten works only on non-cyclic

lisp values.
● Flatten/un-flatten duplicates shared nodes.
● Don’t really need to store the lisp source in

flash at all. Future work.

Duplication

Conclusion
● Trade-off image size vs performance.
● Trade-off performance vs “correctness”.
● Work around limitations of target platforms.

– RAM, FLASH, Constant code size concerns.

● Fun.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

