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LispBM (LBM)
● Lisp like language for microcontrollers.

– (,), car, cdr, (+ 1 2)

● With some built-in functionality inspired by 
Erlang.
– Pattern matching, message passing, process 

monitoring.



  

Target platforms
● Flexible, but mostly

– STM32 (ARM) microcontrollers.
● 192KB ram, up to 1MB flash. 

– ESP32C3 (RISC-V) microcontrollers.
● 400KB ram,  4MB flash.

● Also runs fine on
– X86, Raspberry PI ...



  

Purpose
● Integrate into existing embedded application to 

provide a scripting layer.
– Sandboxed.
– Not the only thing using FLASH/RAM.



  

Problems!
● Our programs are larger than our RAM.
● Flash memory has limitations.
● Booting is slow.



  

Booting an LBM application




  

Boot process



  

Boot process
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Boot process

2
(define a 10)

(+ a 10)



  

Boot process

2
(define a 10)

(+ a 10)

Eval

Incremental read



  

Boot process

2
May require 
more heap than 
we have! 



  

Boot process

2



  

Boot process

2

@const-start
(define a [1 2 3 4])
(defun f (x) (+ x 1))
@const-end

Eval



  

Boot process
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Boot process

2

@const-start
(define a [1 2 3 4])
(defun f (x) (+ x 1))
@const-end

Eval

Flash is a bit tricky!



  

Why are constant blocks tricky



  

Summary so far
● The boot process is slow!
● Constant heap is a bit awkward.

– Careful programming needed!



  

Images to the rescue!
● Image based development.

– Smalltalk, SBCL.
– Fun playful REPL-interaction based development.
– (save-image)



  

The idea

Runtime 
system

Libraries

Heap

Distributable 
binary blob 



  

Restart

Distributable 
binary blob 



  

Restart

Distributable 
binary blob 

Restarting a sytem in this way should be MUCH 
faster than that entire reader based bootup-
process from earlier! 

Runtime 
system

Libraries

Heap



  





  

Problems!
● Not enough room for a complete copy of HEAP, 

arrays-memory and constant-heap. 
● RTS data-structures must be restored upon 

image-boot.
– Symbol numbering, extensions

● Initialization of peripherals.



  

Decisions
● Not going to save all state. 

– Not saving threads. 
– Not even going to try to automatically reinitialize any 

peripherals. 
– Not going to save entire RAM heap to image.
– Not going to save entire arrays memory to image.

● A Startup entry is saved in the image.
– Reinitialize peripherals.
– Start up threads.

● Save the values stored in the global environment.



  



  

Decisions
● Create the image incrementally

– The constant heap is built-up inside of the image from 
the beginning.

– RTS data-structures that needs to be restored upon 
image-boot are created inside the image storage by 
default. 

● Symbol string ↔ number mappings.
● Extensions function pointer addresses.
● Constant heap write position.



  

Image Structure
● The image is a collection of data fields written 

into flash.
● Duplicated data fields are allowed, where later 

fields have priority over earlier. Allows 
Incremental work towards same image.



  



  

FW

The image

LBM RTS

LISP SOURCE

”IMAGE”

● Constant heap grows from 
bottom of image and upwards.

● All other data is added from 
the top and downwards in the 
image. 

● When these two write pointers 
meet, image is full. 



  

Creating an image



  

Creating an image

Source is read and 
evaluated, data-structures 
built in constant heap.



  

Creating an image

Source is read and 
evaluated, data-structures 
built in RAM heap.



  

Creating an image

Saves RAM heap structures to 
image (and more)



  

Typical Image-save



  



  

Boot 
● Check if there is an image: 0xBEEF2001

– Constant heap exists. Initialize 
– Start reading fields from top of image.



  

Restore environment



  

Restore environment



  

Flatten and un-flatten
● Recursive serialisation and de-serialisation 

functions. 
● We ran out of stack on the thread that 

performed serialisation and de-serialisation.



  

Flatten and un-flatten
● Recursive serialisation and de-serialisation 

functions. 
● We ran out of stack on the thread that 

performed serialisation and de-serialisation.
● Replaced with pointer reversal algorithms!



  

Thoughts
● Boot is fast!
● Incremental work against image ”possible” but 

not ideal (duplication).
● Program source only read once, constant block 

determinism is not a problem.
● A “main” or “startup” function is needed.



  

Thoughts
● Flatten  and un-flatten works only on non-cyclic 

lisp values.
● Flatten/un-flatten duplicates shared nodes.
● Don’t really need to store the lisp source in 

flash at all. Future work.



  

Duplication



  

Conclusion
● Trade-off image size vs performance.
● Trade-off performance vs “correctness”.
● Work around limitations of target platforms.

– RAM, FLASH, Constant code size concerns.

● Fun. 
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